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               Physics 25 Chapter 28  Special Relativity      

                                        Dr. Joseph F. Alward 

       

Video Lecture 1:   Mass-Energy Equivalence 

Video Lecture 2:   Relativistic Energies  

Video Lecture 3:   Time Dilation 

Video Lecture 4:   Length Contraction 

Video Lecture 5:   Relative Velocity 

 

 

 
According to Albert Einstein’s Special Theory of Relativity, mass and energy are two different 

forms of the same thing, called “mass-energy.”  Mass can be created out of energy, and energy 

out of mass. The energies encountered in this chapter typically are less than a trillionth of a joule; 

it is more convenient to use the unit of energy described below:  MeV 

 

                                            Alternative Energy Units 
 

 
1.0 electron-volt (eV) = 1.6 x 10-19 J 

1.0 million eV (MeV) = 1.0 x 106 eV 

                                    = 1.6 x 10-13 J 

 
 

One example mass being converted to energy of is seen in the process called electron-positron 

annihilation. A positron is the antiparticle of an electron. It has all the properties of an electron 

except for the polarity of the electrical charge, which is positive.  If an electron and a positron 

collide, each particle disappears and in their place appears an amount of electromagnetic energy 

given by the “Einstein Equation,”   

E = mc2 .   

 

 

 

 

 

 

 

https://youtu.be/NcQyE4P5sa0
https://youtu.be/-Il-yb7dlpQ
https://youtu.be/egZM4GoW2Tw
https://youtu.be/6z_X1bM7pjk
https://youtu.be/Bu3xvTprgcc
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                                  Electron-Positron Annihilation 

 

 
The sum of the two masses is m = 1.82 x 10-30 kg; the energy equivalent 

of this amount of mass is  

 

E = 1.82 x 10-30 (3.0 x 108)2 

   = 1.64 x 10-13 J  

   = 1.64 x 10-13 J /1.6 x 10-13 J/MeV 

   = 1.02 MeV 
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                        Total Energy 

 

According to the special theory, the total energy of an object moving 

with speed v is: 

 

E = mc2 / (1 - β2)1/2            where β = v/c  and c = 3.00 x 108 m/ s 

 

Example:   

 

What is the total energy (in MeV) of a proton whose speed is four-

tenths the speed of light? 

 

                          β = 0.40 

                m = 1.67 x 10-27 kg 

                

                 E = mc2 / (1 - β2)1/2       

                     = (1.67 x 10-27)(3 x 108)2 / (1 - 0.402)1/2 

                     = 1.64 x 10-10 J 

 
(1.64 x 10-10 J)/ (1.6 x 10-13 J/MeV) = 1025 MeV 

 

 

                 Rest-Mass Energy 

 

The total energy an object has when it is at 

rest relative to an observer, i.e., when  

β = 0, is called the “rest-mass energy.” 

                    

                     E = mc2 / (1 - 02)1/2 

                         = mc2 

 

                          Example:   

 

What is the rest-mass energy of protons? 

 

Proton Mass:  m = 1.67 x 10-27 kg 

 

mc2 = (1.67 x 10-27) (3.0 x 108)2  

     = 1.503 x 10-10 J / 1.6 x 10-13 J/MeV 

     = 939 MeV 
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     Relativistic vs Classical Kinetic Energy  

 

 

Subtract the rest-mass energy mc2 from the total energy E, 

and what’s left is the motional (kinetic) part of the energy, 

i.e., the kinetic energy, K: 

 

                                    K = E - mc2 

 

                              K = mc2 /( 1- β2)1/2 - mc2 

     

The kinetic energy we learned about in a previous semester, 

½ mv2, is called the “classical” kinetic energy, while this 

new K is called the “relativistic”  kinetic energy.  The 

relativistic kinetic energy is the correct kinetic energy, while 

the classical kinetic energy is only approximate. 

 

At “non-relativistic” speeds (v less than one-tenth the speed 

of light), the relativistic kinetic energy is virtually the same 

as the classical kinetic energy, so either equation may be 

used without meaningful error.  In that case, it’s easier to use 

the classical equation, K = ½ mv2. 

 

 

 

                   Work-Kinetic Energy Theorem 

 
Recall from Physics 23 the relationship between the total work 

done on an object and the resulting change in that object’s kinetic 

energy. 

 

 

Example:   

How much work (in  MeV) must be done to change the speed of a 

proton from 1 = 0.20 to 2 = 0.60? 

K2  = 939 / (1 – 0.602)1/2  

      = 1173.75 MeV 

K1  = 939 / (1 – 0.202)1/2  

      = 958.36 MeV 

W = K2 – K1 

       =  215.39 MeV 
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                              Proton Moving at non-Relativistic Speed 

                            

 Example:                                  

 

Calculate and compare the classical and relativistic kinetic 

energies (in joules) of a proton (mc2 = 939 MeV) traveling 

at the non-relativistic speed, v = 600 m/s  

 

Classical:        

 

K = ½ mv2 

    = ½ (1.67 x 10-27) (600)2 

    = 3.006 x 10-22 J 

     

  

Relativistic:    

 

2 = (600 / 3 x 108)2 
      = 4 x 10-12 

 

K = mc2 / (1- β2)1/2 - mc2   

    = 939 / (1 – 4 x 10-12 )1/2 - 939 

    = (4.6950 x 10-4 MeV) (1.6 x 10-13 J/MeV) 

    = 3.008 x 10-22 J 

     

 

Even at speeds as large as 600 m/s, the classical kinetic 

energy value is only about 0.007 % less than the relativistic 

value, so one is justified in using the classical kinetic 

energy equation, K = ½ mv2. 

 

At much higher speeds, the classical kinetic energy is 

wildly inaccurate, as the following example illustrates. 
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                                   Proton Moving at Relativistic Speed 

                            

At higher speeds, the classical kinetic energy is quite 

inaccurate, so the relativistic equation is the one that 

should be used.  The following example illustrates how 

great can be the difference between the correct K—the 

relativistic one, and the inaccurate K, the classical one. 

 

Obtain the kinetic energies in MeV. 

                        

Example:                                  

 

Calculate and compare the classical and relativistic kinetic 

energies (in joules) of a proton (mc2 = 939 MeV)  traveling 

at the relativistic speed, v = 1.2 x 108 m/s ( = 0.40). 

 

 Classical Kinetic Energy:        

 

  K = ½ mv2 

      = ½ (1.67 x 10-27) (1.2 x 108)2 

      = 1.20 x 10-11 J /1.6 x 10-13 J/MeV 

      = 75.15 MeV                      

                     

 Relativistic:    

 

  K = mc2 / (1- β2)1/2 – mc2 

      =  939 / (1 – 0.402)1/2 - 939 

      = 85.53 MeV 

  

The classical kinetic energy is about 14% less than the 

correct kinetic energy. 
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                                         Events     

 

In what follows we will be discussing “events.”  For example, an event might be a 

runner beginning and completing a run, or a candle lighted and eventually burning out, 

or the falling of a cone breaking loose from a pine tree and landing on the ground, or the 

a space-traveler beginning a trip at one solar-system, and ending at a second one.  

 

According to Einstein, different observers moving at different speeds, observing an 

event, disagree about how much time it took for the event to occur and both are correct. 

 

                   

                        Proper Time vs Dilated Time 

 

                     
To = Proper time 

 
The “proper” time is the amount of time it takes for an event to occur 

according to an observer who is at rest relative to the location of the event.   

 

T = Dilated time 

 

The ”dilated” time is the amount of time it takes for the event to occur 

according to an observer moving relative to the location of the event. 

 

Both observers are correct; one’s reality depends on one’s speed relative to 

events.  Such realities are true for each observer. 

 

T = To / (1 - 2)1/2  

 
Note:  The denominator is less than 1.0, so the dilated time is greater than the 

proper time. 

 

 Note:  “Proper” is somewhat of a misnomer.  The proper time is not a more 

accurate, or better time measurement than the dilated time.  Each is correct for 

the respective observers. 
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                                Example:   

 

An observer holding an ice cube measures the time it took to melt to be 8.0 minutes.  

She is at rest relative to the location (her hand) of the event (the melting), so she 

measures the proper time: 

   

To = 8.0 minutes 

 

A second observer looking at the melting cube in the first observer’s hand while moving 

at β = 0.40  says it  took more than 8.0 minutes melt.  She measures the dilated time. 

        

  

T = To / (1 - β2)1/2 

    = 8.00 / (1 - 0.402)1/2 

     = 8.73 minutes 

 

What is the correct time? 

Answer:  Both are correct. 

 

 

 

 

                                                         Example:   

 

A runner completes a journey while running 2.00 minutes, according to her.  Does she 

measure the dilated time, or the proper time?  

 

The runner is located where the event--the running-- is occurring, just like the person 

who held the ice cube in the previous example was located where the event--the 

melting--was occurring, so the runner measures the proper time.  

 

                         To = 2.00 minutes 

 

Suppose a passenger in a spaceship flying by the event at  0.80 c observes the running.  

How long will he say it took the runner to complete her run? 

 

The passenger is moving relative to the location of the event (the runner’s location), so 

he measures the dilated time: 

 

T = 2.00 /(1 - 0.802)1/2 

   = 3.33 minutes 

 

Both times are correct (for the respective observer.) 

                                



9 

 

        Length Contraction 
 

 

            
                                            Proper Length Lo 

 

Lo = Length measured by an observer at rest relative to the object 

      

                                          Contracted Length L 

 

L = Length measured by an observer moving relative to the object 

    = “the contracted length” 

 

                                              L = Lo ( 1 - β2)1/2 
 

 

Both lengths are correct for their respective observers.  There are as many 

realities in nature as there are observers. 

 

Contraction occurs in the dimension that is along the direction of motion of 

the moving observer.  Below we show an object moving to the right, toward 

an observer.  The narrowing of the object’s  width occurs along the object’s 

direction of travel and depends on the object’s speed. 

 

 

 

 

 

Note:  the word “proper” does not imply that the length measured by the stationary 

observer is the “real” length, and all other measurement are somehow flawed or 

“improper” because of errors by the observer, faulty equipment, or  illusion.  The length 

measured by the moving observer is just as real for that observer as it is for the observer 

who is at rest relative to the object. 
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                                        Example:   

 

A observer at rest relative to a bridge measures it to be 400 m.  

This is the proper length:  Lo = 400 m 

 

A traveler in a rocketship is traveling at 0.70 c relative to the 

bridge.` 

 

(a)  What does the traveler say is the length of the bridge? 

 

The traveler is moving relative to the bridge, so he measures the 

contracted length: 

 

L = Lo (1 - β2)1/2 

   = 400 (1 - 0.702)1/2 

   = 286 m 

 

(b)  How much time does the traveler say it took him to travel 

past the bridge?  

 

Answer:  He is located where the event (the traveling) is 

occurring, so he measures the proper time, To. 

 

v = 0.70 (3.0 x 108 m/s) 

   = 2.1 x 108 m/s 

 

Time = Distance / Speed 

     To = 286 m / 2.1 x 108 m/s 

         = 1.36 x 10-6 s 
                              
(c)  How long does the stationary observer say the rocketship 

took to travel past the bridge? 

 

        T = To / (1 - β2)1/2  

        = 1.36 x 10-6 / (1 - 0.702)1/2 

        = 1.90 x 10-6 s 

Each observer measures the correct time, for them. 
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     Classical Relative Velocities  

 

In classical physics, relative velocities are 

calculated as illustrated in the example below. 

 

Let the velocity of an Object A relative to an 

Earth observer be VAE and the velocity of Object 

B relative to the Earth observer be VBE. 

 

Velocities of objects moving toward Earth are 

negative, while objects moving away from Earth 

have positive velocities. 

 

  
 

The velocity of Object A relative to Object B is  

 

 

VAB = VAE - VBE 

 

Example:  VAE = 20 m/s and VBE = -30 m/s 

 

 
VAB = VAE - VBE 

        = 20 - (-30) 

        = 50 m/s 

 

Observer B sees A moving toward it at a speed 

of 50 m/s. 
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                               Relative Velocities (Relativistic) 

 

At very great velocities--greater than about one-hundredth the 

speed of light, velocities are said to be “relativistic.”  Relative 

velocity calculations involving extremely high-speed objects must 

be done using the relativistic equations shown below; classical 

physics equations are not accurate.   

 

The equation that is valid for relativistic as well as classical 

velocities is shown below for Objects A and B moving relative to 

an observer on Earth. 

 

 
AB  = (AE -  BE)  / (1 - AE BE) 

 

 

                                Example:   

 

Re-work the previous problems using the relativistic equations.  

 

               VAE = 20 m/s and VBE = -30 m/s 

z       = 50.000000000000006 m/s  

 

There nothing to be gained by treating things relativistically  when 

speeds are not at least one-hundredth of the speed of light.  At 

lower speeds, the results from classical calculations are virtually 

the same as the ones using relativistic ones. 
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                                             Example: 

 

Spaceship A is moving at a velocity 0.50 c relative to observers 

on Earth, as it chases Spaceship B, which is moving relative to 

Earth at 0.30 c.   

 

(a)  What is the velocity of A as seen by Spaceship B? 

 

 

AB  = (AE -  BE)  / (1 - AE BE) 

       = (0.50  - 0.30 ) / [1 - (0.50) (0.30)] 

       =  0.24  

vAB = 0.24 (3.0 x 108) 

   = 7.2 x 107 m/s 

 

(b)  What is the velocity of B as seen by Spaceship A? 

 

vBA = - 7.2 x 107 m/s 

 

 

 

 

   

 

 

 

 

 


