Physics 25 Practice Problems Chapter 18

1. What is the electric force on an up quark in a proton due to the other up quark, assuming their separation is $1.0 \times 10^{-15} \mathrm{~m}$?
2. What is the electric force of attraction (in nano-newtons, nN) between a Ca^{++}ion in CaCl_{2}, and either one of the two chloride ions $\left(\mathrm{Cl}^{-}\right)$, assuming the separation between the calcium ion and the chloride ions is one angstrom $\left(1.0 \times 10^{-10} \mathrm{~m}\right)$?
3. Suppose the electric force between two equal charges is 640 pico-newtons (pN) ($640 \times 10^{-12} \mathrm{~N}$). What would be the new force if the separation between the charges is doubled?
4. Two protons are placed at opposite vertices of a square, and an electron is placed at another vertex. The side length of the square is $5.0 \times 10^{-11} \mathrm{~m}$. At the center of the square is a third proton. What is the net force on the center proton?
5. What would have to be the separation in meters between two objects, each having the same charge, $6 \times 10^{-5} \mathrm{C}$, in order that the repulsive force each exerts on the other be 7.2 N?
6. An object having a charge $\mathrm{q}_{1}=3 \mathrm{C}$ is on the x -axis. A second object having a charge $\mathrm{q}_{2}=4 \mathrm{C}$ is also on the x -axis, 7 meters to the right of q_{1}. How far to the right of q_{1} may a charge q_{o} be placed without it experiencing a net electric force?
7. The charge of the object on the right below is $1.0 \mu \mathrm{C}$; the separation between this charge and the unknown charge Q is 3.0 cm . The electric force $1.0 \mu \mathrm{C}$ charge exerts on the unknown charge Q is 12.0 newtons. What is the absolute value of the charge Q (in $\mu \mathrm{C})$?

8. What would have to be the charge of each of two identical charges separated by 1.8 m in order that the repulsive force each exerts on the other be 8.0 N ?
9. The force between two charged objects is 100 N . What would be the new force between the objects if the charge on one object were quadrupled, the charge on the other reduced to one-half, and the separation between the objects reduced to a quarter of its previous value?
10. Two protons are at adjacent vertices of a square whose side-length is $L=2.0 \AA$. What is the net force (in nano-newtons, nN) on an electron placed at one of the other vertices?

Solutions

1. Up quarks:	2.
$\mathrm{Q}=(2 / 3) \mathrm{e}$	$\stackrel{\mathrm{Ca}++}{\mathrm{Cl}^{-}}$
$=(2 / 3) 1.6 \times 10^{-19}$	\
$=1.07 \times 10^{-19} \mathrm{C}$	$\mathrm{F}=9 \times 10^{9}\left(2 \times 1.6 \times 10^{-19}\right)\left(1.6 \times 10^{-19}\right) /\left(1.0 \times 10^{-10}\right)^{2}$
$\mathrm{r}=1.0 \times 10^{-15} \mathrm{~m}$	$=4.6 \times 10^{-8} \mathrm{~N}$
$\mathrm{F}=\mathrm{kQ}^{2} / \mathrm{r}^{2}$	$=46 \times 10^{-9} \mathrm{~N}$
$=102.4 \mathrm{~N}$	$=46 \mathrm{nN}$

$\text { 3. } \begin{aligned} & \begin{aligned} \mathrm{F}_{1} & =\mathrm{kQ}^{2} / \mathrm{r}_{1}^{2} \\ & =640 \mathrm{pN} \\ \mathrm{r}_{2}= & 2 \mathrm{r}_{1} \\ \mathrm{~F}_{2} & \mathrm{kQ}^{2} / \mathrm{r}_{2}^{2} \end{aligned} \end{aligned}$	4. The pushes by the protons at the opposite vertices cancel. The pull by the electron is $\mathrm{F}=\mathrm{ke}^{2} / \mathrm{r}^{2}$, where r is the halfdiagonal distance, $1 / 2 \sqrt{ } 2 \mathrm{~L}$, is $2 \mathrm{ke}^{2} / \mathrm{L}^{2}$
$\begin{aligned} & =\mathrm{k}^{2} /\left(2 \mathrm{r}_{1}\right)^{2} \\ & =(1 / 4) \mathrm{kQ}^{2} / \mathrm{r}_{1}^{2} \\ & =(1 / 4) 640 \\ & =160 \mathrm{pN} \end{aligned}$	5. $\begin{aligned} & 9 \times 10^{9}\left(6 \times 10^{-5}\right)^{2} / \mathrm{r}^{2}=7.2 \\ & \mathrm{r}=2.12 \mathrm{~m} \end{aligned}$
Faster: Doubling r quadruples r^{2}, which quarters the force to 160 pN .	

6.

Sum of forces $=0$:
$\mathrm{k}(3) \mathrm{Q}_{0} / \mathrm{x}^{2}-\mathrm{k}(4) \mathrm{Q}_{\mathrm{o}} /(7-\mathrm{x})^{2}=0$
Divide equation by kQ_{o} and solve for x :
$\mathrm{x}=3.25 \mathrm{~m}$
Note: Q_{o} is closer to the smaller charge, than to the larger one, as expected.

Sum of forces $=0$:
$\mathrm{k}(3) \mathrm{Q}_{\mathrm{o}} / \mathrm{x}^{2}-\mathrm{k}(4) \mathrm{Q}_{\mathrm{o}} /(7-\mathrm{x})^{2}=0$
Divide equation by kQ_{o} and solve for x :
$\mathrm{x}=3.25 \mathrm{~m}$
Note: Q_{o} is closer to the smaller charge, than to the larger one, as expected.

$$
\begin{aligned}
& \text { 7. } \\
& \begin{array}{l}
9 \times 10^{9}\left(1 \times 10^{-6}\right) \mathrm{Q} / 0.03^{2}=12 \\
\mathrm{Q}
\end{array}=1.2 \times 10^{-6} \mathrm{C} \\
& \quad=1.2 \mu \mathrm{C}
\end{aligned}
$$

8.

$\left(9 \times 10^{9}\right) \mathrm{Q}^{2} / 1.8^{2}=8.0$
$\mathrm{Q}=5.37 \times 10^{-5} \mathrm{C}$

> 9. $\begin{aligned} \mathrm{F} & =\mathrm{kQ}_{1} \mathrm{Q}_{2} / \mathrm{r}^{2} \\ & =100 \mathrm{~N}\end{aligned}$
-Quadrupling Q_{1} quadruples F to 400 N .
-Halving Q_{2} halves F to 200 N .
-Quartering r decreases r^{2} to $1 / 16^{\text {th }}$ of its previous value, which increases F to 16 times its previous value to 3200 N .

$$
\begin{aligned}
& 10 . \\
& \mathrm{L}=2.0 \times 10^{-10} \mathrm{~m} \\
& \mathbf{C}=\mathbf{A}+\mathbf{B} \\
& \mathrm{C}_{\mathrm{x}}=\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}} \\
& =0+\left(\mathrm{ke}^{2} / 2 \mathrm{~L}^{2}\right) \cos 45 \\
& =2.04 \times 10^{-9} \mathrm{~N} \\
& \mathrm{C}_{\mathrm{y}}=\mathrm{ke}^{2} / \mathrm{L}^{2}+\left(\mathrm{ke}^{2} / 2 \mathrm{~L}^{2}\right) \sin 45 \\
& =7.80 \times 10^{-9} \mathrm{~N} \\
& \mathrm{C}=\left(\mathrm{C}_{\mathrm{x}}{ }^{2}+\mathrm{C}_{\mathrm{y}}{ }^{2}\right)^{1 / 2} \\
& =8.06 \times 10^{-9} \mathrm{~N} \\
& =8.06 \mathrm{nN}
\end{aligned}
$$

