
1 

 

Physics 25 Chapters 16-17      

                Waves 

           Dr. Joseph F. Alward 

 

Video Lecture 1:   String Wave Resonances 

Video Lecture 3:   Doppler Effect for Sound 

Video Lecture 4:   Open-Closed Tube Resonances 

Video Lecture 5:   Open-Open Tube Resonances 

Video Lecture 6:   Sound Intensity, Decibels 

Video Lecture 7:   Decibel Level Problems 

Video Lecture 8:   Sound Wave Interference 

 

Waves on Strings 

 
 

Oscillate (shake) once:  A “pulse” 

is created that travels to the right at 

a pulse speed v   

 

 

 

 

 

 

 

 

 

 

 

 

 

https://youtu.be/GNccjJ-XRPM
https://youtu.be/NfV_Z0T3RSM
https://youtu.be/pLhqPprxAOo
https://youtu.be/3YMcInOjkjo
https://youtu.be/WUu9MFjuFLY
https://youtu.be/X7aw8FBNDoo
https://youtu.be/TfRNdstKRkg
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                                  Waves 

 

Wave Frequency 

 

 
 

Oscillating the string repeatedly creates a “train” of pulses, called a 

“wave,” whose “frequency” is the number of times per second the 

string is oscillated (shaken). 

 

Equivalent SI units of frequency units are shown below:  

 

Units 

s-1 (per second) 

hertz (Hz) 

 

For example, a frequency of five oscillations per second may be 

indicated in either one of two equivalent units: 
 

                                         5.0 s-1 

                                         5.0 Hz  

             

Wavelength 

 

  
At any instant, various points on the string are displaced vertically by 

various amounts.  Points of extreme displacements occur at “peaks” 

(maxima) and “valleys” (minima).   The distance between two 

maxima is the same as the distance between two minima, and is called 

the “wavelength” of the wave, symbolized as . 
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        Nodes and Anti-nodes 

 

 

As the wave travels to the right there are 

places where the string is momentarily not 

displaced, as shown below.  These places 

are called “nodes.”   

 

Maxima and minima are places along the 

length of the string which are experiencing 

momentary extremes, i.e., either maxima, 

and minima.  These occur between two 

nodes, and are called “antinodes.” 

 

 
Note below that  the distance between two 

nodes is one-half of a wavelength (/2.  

Midway between two nodes is an antinode, 

so we can further note that the distance 

between a node and an antinode is one-

fourth of a wavelength, /4: 
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                       Wave Speed 

 
 

Each of the pulses that make up the wave is traveling at 

the same speed, v, called the “wave speed.”  The wave 

speed depends on the mass m and length L of the string, 

and on the string’s tension T. 

 

 

 

 
 

            μ = “Linear Mass Density” 

               = m/L 

            T = Tension  

            v = Pulse Speed 

               = (T/μ)1/2 

 

 

Example:   

 

T = 5.0 N         

m = 0.04 kg 

L = 0.80 m 

μ = 0.04 kg/(0.80 m_ 

   = 0.05 kg/m 

v = (5.0/0.05)1/2  

   = 10 m/s 
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                                           Amplitude   

The “amplitude” of a string wave is the absolute value of 

the maximum displacement of the string particles.  

Amplitudes will not play a role in the coming discussion 

of waves, so we don’t bother to provide amplitude a 

symbol name.               
 

 
                

                   The Wave Equation 

 
The three quantities wavelength , wave frequency f, and 

wave speed v are related to each other through the so-called 

“wave equation, “ shown below: 

 

                                             f = v 
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Example A:   

 

The speed of  waves on a string is 12.0 m/s.   

 

At what frequency will the wavelength of wave on the 

string be 4.0 m? 

 

f = v/λ 

  = (12.0 m/s )/(4.0 m) 

  = 3.0 s-1  

   = 3.0 Hz 

 

Example B:   

 

Calculate the wavelength of the string wave that has the 

following attributes: 

 

T = 100 N m = 0.40 kg L = 1.6 m f = 10 Hz 

 

 = (0.40 )/1.6  

   = 0.25  

v2 = 100 / 0.25  

 v  = 4001/2 

   = 20 m/s 

 

 = (20 m/s)/10 s-1 

   = 2 m 
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 String Wave Resonances 
 

 

 
 

If the string is tied to a wall at the right end, pulses reflected from the wall 

bounce back and forth from the wall to the hand, hand to wall.   

 

At certain frequencies, the oppositely-traveling pulses overlap 

“constructively,” meaning that a wave is created whose wave amplitude is 

greater than the oscillation amplitude. This effect is called a “resonance.”   

 

Another name for resonance is “standing wave” because the wave’s shape, to 

the eye, appears to be unchanging.  

 

 Examples of standing waves are shown below. 
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The resonances below are in the shape of a series of “loops.” At the ends of each loop are nodes.  Recall 

that the distance between consecutive nodes in a wave is /2.  Thus, each loop has a width of half of a 

wave-length (λ/2).    

 

 

 

 
 

String particles in adjacent loops are oscillating 

“out of phase”:  If the string in one loop is 

moving upward at some moment, the string in 

any adjacent loop is moving downward, and 

vice-versa. 

 

 

 

 

 

                           Click Here  to view video demonstration of standing waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=-gr7KmTOrx0
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The standing waves above are in the shape of a series of “loops.” At 

the ends of each loop are nodes. The A and N labels alternate.  The 

reader is to understand that the right ends of the strings shown above 

are tied down, while the left ends are attached to an oscillator whose 

vibration amplitudes are small enough compared to the ones at the 

antinode locations that we can treat those ends as nodes. 

   

Recall that the distance between consecutive nodes in a wave is a 

half-wavelength, λ/2.  Thus, each loop above has a width equal to a 

half wave-length:  λ/2.    

 

The figures above show standing waves with one, two, three, and 

four loops.  Because loops have one antinode at their centers, we 

may alternatively say that the figures above show one, two, three, 

and four-antinode standing waves. 
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Example:   

 

We show below that the frequencies that resonate on a string 

tied at both ends are integer multiples of the lowest resonant 

frequency:   

  

Shown in the table below are examples of string resonant 

frequencies and the names associated with them.   

 

The lowest frequency that resonates is called the “fundamental 

frequency.”  Other frequencies are integer multiples (1,2, 3, 

4…) times the fundamental frequency.  All of these frequencies 

are called “harmonics.”   

 

Frequencies higher than the fundamental are “over” the 

fundamental frequency, and are called “overtones.”  The next-

higher resonant frequency above the fundamental is called the 

“first” overtone, for example. 

 

 

Frequency 

(Hz) 

Symbol Name Other Name 

40 f1 First Harmonic Fundamental 

80 f2 Second Harmonic First Overtone 

120 f3 Third Harmonic Second Overtone 

160 f4 Fourth Harmonic Third Overtone 

 

                                        fn = nf1, n = 1, 2, 3, 4, …. 
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Example:   

 

The sixth harmonic frequency resonating 

on a string is 780 Hz.  What is the second 

harmonic? 

 

6 f1 = 780 Hz 

f1 = 130 H 

f2 = 2 (130) 

   = 260 Hz 

 

 

 

 VIDEO DEMONSTRATION OF STANDING WAVE 

                    Click Here 

     

 

Example:   

 

The speed of pulses on a string of length 

1.40 m is 2.60 m/s.   

 

What frequency of oscillation will 

create a standing wave with four 

antinodes? 

 

 
 

Each of the four loops has a width of 

λ/2.  The sum of the four loop widths 

equals the length of the string:*  

 

4(λ/2) = 1.40 m 

λ = 0.70 m 

 

f = v/λ 

  = 2.60/0.70 

  = 3.71 Hz 

 
 

 

https://www.youtube.com/watch?v=-gr7KmTOrx0


12 

 

. 

 

Example:   

 

 
Resonance on 1.60 m string 

occurs with six antinodes when 

the string is oscillated at 6.0 Hz.  

The tension in the string is 14.0 N.  

 

What is the linear mass density of 

the string? 

 

Solution: 

 

(T/µ)1/2 = v 

µ = T/v2 

    = 14.0/v2 

We need v: 

 

There are six loops, and all loops 

on strings have a width of λ/2, so 

 

6(λ/2) = 1.60 

        λ = 0.53 m 

 

v = λf 

   = 0.53 (6.0) 

   = 3.18 m/s 

 

µ = 14.0/v2 

    =14.0/3.182 

    = 1.38 kg/m 
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                  Resonances on Hanging Ropes 

 
If one end of a hanging rope is oscillated at the top, while the bottom 

is free to move, a standing wave can be made to occur at certain 

frequencies. When resonance occurs, the top of the rope is a node, 

while the bottom is an antinode. 

 

Example:  

 

A rope 0.90 meters long is hanging vertically; 

the bottom of the rope is free.  

 

An oscillator attached to the top of the rope is 

vibrating at a frequency of 4.0 Hz, which 

causes a resonance with four antinodes (3.5 

loops).  What is the speed of waves on this 

rope? 

 

 

 

 

 
3.5 (λ/2) = 0.90 

            λ = 0.51 m 

 

v = λf 

   = 0.51 (4.0) 

   = 2.1 m/s 
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                                 Sound Waves 

 

The figure below shows a speaker whose vibrating membrane is creating a sound wave 

consisting of a train of compressions and “rarefactions” moving at the “speed of sound,” 340 

m/s.  Compressions are, as the name implies, places where the air is more dense than normal, 

while rarefactions are places where the air is less dense. 

 

 

                                              

 

The Figure 1 below indicates that the wavelength  of a sound wave is the distance between 

neighboring compressions.  Figure 2 shows that the wavelength is also the distance between 

neighboring rarefactions. 

 

 
     

             Figure 1 

 
 

              Figure 2 

 
 

                                 The Wave Equation for Sound 

                                                 

                                                    f = 340 m/s 

                                                  f = Frequency of the Sound Source 
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                                  Waves Interfering with Matter 

                  

                      
Waves whose wavelengths are much longer than the width of an object do little 

or no damage to the object, while waves with wavelengths comparable to the 

size of an object can exert shearing forces that could rip he object apart.  

 

Consider the example below of a ship at sea. In Figure 1 the ship’s rises and falls 

are gentle, while the experience of the ship in Figure 2 is like that which would 

be experienced by an automobile traveling at high speed over a succession of 

closely spaced speed bumps. 

 
 

In Figure 1, the ship experiences gentle rises and falls, while the ship in Figure 2 

experiences sudden violent rises and falls which could tear the ship apart. 

 

Example: 

 

“Lithotripsy” is a medical procedure in which ultrasound is used to break up 

kidney stones.  What is the optimum ultrasound frequency for breaking up a 

kidney stone whose diameter is one centimeter (0.01 m)? 

 

In kidney tissue, the speed of sound is about 1500 m/s.  

 

f = v/λ 

  = 1500/0.01 

  = 150,000 Hz 
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   The Doppler Effect for Sound 

 

 

 

 

Rule:  If the object (source, or observer) is moving away from the other one, use the sign for that 

speed term that makes the ratio smaller.  Mnemonic:  “away” and “smaller” have negative 

connotations. 

  

If it’s moving toward the other one, use the sign for that speed term that makes the ratio larger.  

Mnemonic:  “toward” and “larger” have positive connotations. 

 

  See Video Explaining Doppler Effect for Sound 

 

Example A: 

 

Suppose an observer is at rest (vo = 0), and a 

fire truck with its siren on is moving away 

from the observer at a speed vs = 30 m/s.  If 

the siren’s frequency fs is 5,000 Hz, what 

does the observer hear? 

 

The source is moving away, so, by the rule 

given above, we need to choose the sign for 

the source speed that will make the ratio 

smaller, so we make the denominator larger 

by adding 30 to the 340 in the denominator. 

 

fo = 5000 (340 + 0) / (340 + 30) 

    = 4595 Hz 

 

Example B:   

 

A police car emitting 4000 Hz sound is 

chasing a speeder.  What frequency does the 

driver of the speeding car hear? 

 

 
fo = 4000 (340 - 50) / (340 - 30) 

    = 3742 Hz 

 

 

 

 

https://www.youtube.com/watch?v=rbcvPEXiWWo
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Example A:   

 

A fire truck emitting 2500 Hz and traveling at 40 

m/s is racing toward an automobile that’s traveling 

toward the fire truck.  The automobile driver hears 

3000 Hz.   

 

What is the automobile’s speed?   

 

 
 

Each vehicle is moving toward the other, so each 

sign choice is the one that makes the ratio larger: 

We make the numerator larger by adding, and the 

denominator smaller by subtracting. 

 

3000 = 2500 (340 + vo) / (340 - 40) 

     vo = 20 m/s 

 

Example B:   

 

An ambulance emitting 2000 Hz is 

moving toward a stationary auto; the 

auto’s occupant hears 2100 Hz.  What 

is the ambulance’s speed? 

 
 

The ambulance is moving toward the 

observer, so we choose the sign for the 

source speed that makes the ratio larger:  

the negative sign. 

 

2100 = 2000 (340 + 0)/(340 - vs) 

vs = 16.2 m/s 
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                          Sound Wave Resonance in Hollow Tubes 

 
Shown  below is a hollow tube, closed at the right end, and open at the left end.   We will refer to 

such a tube as “open-closed.” 

 

 A vibrating speaker membrane causes air in the tube to vibrate back and forth.  At certain 

frequencies a “resonance” occurs which results in much louder sound than would otherwise be 

heard if the sound were not being directed into the tube.  

 

 When sound is resonating in the tube, there is a displacement anti-node at the open end, and a 

displacement node at the closed end.  Resonances can occur with more than just one node and 

one antinode; shown below is a resonance  with four nodes and four antinodes.  At any of the 

nodes, air is neither moving rightward, nor leftward; it is stationary.   At nodes, the air is not 

moving, and has the density of undisturbed air (the air in the room, for example).  On the other 

hand, the air at any anti-node is oscillating leftward and rightward, becoming alternately 

condensations, then rarefactions.  At nodes, the air is not moving, and has the density of 

undisturbed air. 

  

 

 

When resonance occurs there is always a displacement node at the closed end of the tube, 

analogous to the displacement node that always exists at the end of the string attached to the 

clamp, as well as at the end at which the hand or other agent is vibrating the string.  At nodes in 

resonating sound in tubes, the air is not moving, analogous to the motionless string particles in 

resonating strings. 

 

Just like the antinode at the bottom of a hanging rope that’s experiencing resonance, the open 

end of the tube is an antinode:  air particles at antinodes experience maximum displacement back 

and forth, to the right, and then to the left. 
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Note:  Just as was true about displacement nodes and antinodes in string wave 

resonances, the distance between a  neighboring sound wave displacement nodes 

and antinodes is a quarter wavelength: 

 

                                                                      
 

When sound wave resonance occurs in tubes, the 

following is true: 

• Closed ends are displacement nodes. 

• Open ends are displacement antinodes. 

• A and N labels alternate: 

 

•                       AN = NA = /4                                                              

 

When this happens, small-amplitude sound input at an 

open end of a tube becomes amplified. 
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                                    Harmonic Frequencies 

 

The frequencies that resonate in hollow tubes are often called “harmonic” frequencies.  Often, 

the words “harmonic frequencies” is shortened to “harmonics.” We will show in the work below 

how these frequencies are calculated for open-open tubes first, and then later we will do the same 

thing for open-closed tubes. 

 

           Open-Open Tubes 

                           Example:   

What are the four lowest harmonics that resonate in tubes open at each end, and 0.85-meter 

tube long? 

The sum of the quarter-wavelengths (/4) distances AN and NA equals the length of the tube. 

 

 
 

2(λ/4) = 0.85 m 

 

λ = (3.40/2) m 

 

f1 = 340/λ 

  =  200 Hz 

 

Fundamental 

         or 

First  Harmonic 

 

4(λ/4) = 0.85 m 

 

λ = (3.40/4) m 

 

f2 = 340/λ 

  =  400 Hz 

 

Second Harmonic 

6(λ/4) = 0.85 m 

 

λ = (3.40/6) m 

 

f3= 340/λ 

   =  600 Hz 

 

Third Harmonic 

8(λ/4) = 0.85 m 

 

λ = (3.40/8) m 

 

f4 = 340/λ 

   =  800 Hz 

 

Fourth Harmonic 

 

              Harmonics are integer multiples of the fundamental frequency:  

                                          fn = nf1, n = 1, 2, 3, 4…. 
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                Resonance in Open-Closed Tubes 

 

                        
                                                Example:  

  

What are the four lowest harmonics of sound in open-closed tube 0.85 meter 

long?  By the rules listed above, there is a node (N) at the closed end, and an 

antinode (A) at the open end.  Further note that the letters A and N alternate, 

as was the case for string waves, and open-open tubes. 

 

The sum of the quarter-wavelengths (/4) distances AN and NA equals the 

length of the tube. 

 

 
 

 

1(λ/4) = 0.85 

 

λ = 3.40 m 

f = 340/λ 

  =  100 Hz 

f1 = 100 Hz 

 

1st Harmonic 

3(λ/4) = 0.85 

 

λ = (3.40/3) m 

f   = 340/λ 

    =  300 Hz 

f3 = 300 Hz 

 

3rd Harmonic 

5(λ/4) = 0.85 

 

λ = (3.40/5) m 

f = 340/λ 

  =  500 Hz 

f5 = 500 Hz 

 

5th Harmonic 

7(λ/4) = 0.85 

 

λ = (3.40/7) m 

f = 340/λ 

  =  700 Hz 

f7 = 700 Hz 

 

7th Harmonic 

 

The harmonics in open-closed tubes are odd-integer multiples of the 

fundamental frequency: 

                                  fn = nf1, n = 1, 3, 5, 7, ..  

For example, if the lowest harmonic is 40 Hz, then the other harmonics are 

120 Hz, 200 Hz, 280 Hz…. 
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                                Sound Intensity 

 

 

Example: 

 

Each second, 4.0 x 10-6 J of 

sound energy land on an area  

A = 2.0 x 10-4 m2.   

 

What is the sound intensity at 

that location? 

 

P = 4.0 x 10-6 W 

I = P/A 

  = (4.0 x 10-6 W)/(2.0 x 10-4 m2) 

  = 2.0 x 10-2 W/m2 

 

 

                          Spherically-Symmetrical Sound Sources 
 

Sound sources that broadcast equal amounts of energy each second in all directions are 

called “spherically-symmetric” sound sources.  If the power output of the source of sound 

is P, and the listener’s ear is a distance r away, located on the surface of an imaginary 

sphere whose surface area is 4πr2, the ear of the listener experiences a sound intensity 

according to the equation below: 

                                                                  I = P/4πr2 

 

Example:   

 

A spherically-symmetric sound source has a 

power output of 200 watts.   

 

What is the intensity 4.0 meters away? 

 

A = 4π(4.0)2  

    = 201.06 m2 

 

I = P/4πr2 

  = (200 W) /(201.06 m2) 

  = 0.995 W/m2 
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Example A:   

 

How far from a spherically-symmetric 

40-watt sound source would the sound 

intensity be one milli-watt per square 

meter? 

 

              I = P/4πr2 

1.0 x 10-3 = 40 / (4πr2) 

              r = 56.42 m 

Example B:   

 

At a certain distance from a 

spherically-symmetric sound source 

the intensity is 2.0 W/m2.   

 

What is the intensity five times 

farther away? 

 

Quintupling r will cause the 

denominator to become 52 = 25 times  

its previous value.  Therefore, the 

new intensity will be 1/25th of the 

previous value: 

 

 

New intensity = 2.0/25 

                        = 0.08 W/m2 

 

 

 

The Threshold of Human Hearing 
 

 

The least sound intensity the average 

healthy human ear can detect is called 

“The Threshold of Human Hearing.”  
 
            Io = 1.0 x 10-12 W/m2 

 

Below this intensity, the ear hears nothing, 

hence the subscript zero:  Io 

 

This is the intensity an ear experiences 

when a nearby butterfly flaps its wings. 
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Example:   

 

(a)  1.5 meters away from a whisper the sound intensity is 

2.0 x 10-11 W/m2.  Treating the whisperer as a spherically-

symmetric sound source, what is its output power P? 

 

I = P/(4πr2) 

P = 4πr2 I 

   = 4πr(1.5)2 2.0 x 10-11 

   = 5.65 x 10-10 W 

 

(b) What is the greatest distance from the whisperer at 

which the whisper still be heard? 

 

                I = P/(4πr2) 

1.0 x 10-12 = 5.65 x 10-10/4πr2 

              r  =  6.71 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

 

                                    Decibel Level   (also called “Sound Level”) 

 

                                                                         β = 10 log10 (I/Io) 
                                                                     Units: “decibels” (dB) 

 

Example: 

 

 I = 3.0 x 10-6 W/m2 

What is the decibel level? 

 

β = 10 log10 (3.0 x 10-6/1.0 x 10-12) 

   = 65 dB 

 

 

                        Sound Source 

       I 

  (W/m2) 

       β 

     (dB) 

Inaudible 1.0 x 10-12        0 

Whisper at one meter 2.0 x 10-11       13 

Bosch Dishwasher at 5 meters 4.0 x 10-8       46 

Normal Conversation at 1.0 meters 3.0 x 10-6       65 

Garbage Disposal at 2 meters 1.0 x 10-5       70 

Front Row Rock Concert (hearing loss) 0.3       115 

AR-15 Army Rifle near Ear (rupture eardrum) 

 
(Firing my AR at ear height over a tall hedgerow at Viet 

Cong in 1970 cost me hearing in my right ear.) 

10.0      130 

         

 

 

 

 

 

 

https://www.sportsmansoutdoorsuperstore.com/prodimages/64476-DEFAULT-l.jpg
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Example:   

 

The decibel level at a certain point is  = 46 dB.   

 

What is the sound intensity I at that point? 

 

46 = 10 log (I/Io) 

4.6 = log (I/Io) 

 

Use below this relationship:  10log x = x 

 

104.6 = I/Io 

I = (1.0 x 10-12 W/m2 ) 104.6 

  = 3.98 x 10-8 W/m2 

 

 

 

 

Calculating Changes in Decibel Level 

 

Recall log property:  log (A/B) = log A - log B 

 

β2   = 10 log (I2/Io)  

         = 10 log I2 - 10 log Io 

β1   = 10 log (I1/Io)  

         = 10 log I1 - 10 log Io 

Δβ = β2 - β1 

       =10 log I2 - 10 log I1 

     = 10 log (I2/I1) 
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Example A: 

 

If sound intensity becomes 30 times 

greater, what would be the change in 

decibel level? 

 

Δβ = 10 log (I2/I1) 

     = 10 log (30) 

     = 14.8 dB 

 

 

Example B: 

I2 = 2I1 

Δβ = ? 

Δβ = 10 log(2I1/I1)  

      = 10 log(2) 

      = 3.02  

      = 3.0 dB 

(Approximately) 

Example C: 

I2 = ½ I1 

Δβ = ? 

Δβ = 10 log( ½I1/I1)  

      = 10 log (½)  

      = -3.02  

      = -3.0 dB 

(Approximately) 

 

 

                      The 3-dB Up and 3-dB Down Rules 

 
The examples above show that when the sound intensity is doubled, the decibel level 

goes up by about 3.0 dB and when the sound intensity is halved, the decibel level goes 

down by about 3.0 dB.  These doubling and halving rules are called the “3-db up,” and 

“3-db down” rules. 

 

Example B: 

 

Suppose the sound intensity at a certain point increases to eight times as much a 

previously.  What is the change in decibel level? 

 

Three doublings:  2 x 2 x 2 =  8 

 

Each doubling increments the dB level by about 3 dB: 

 

Answer:  3 + 3 + 3 = 9 dB 
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Example A: 

 

(a)  Suppose the intensity at some point 

is increased to 40 times its previous 

value.  How many doublings (call it N) 

of intensity is this? 

 

2N = 40 

Take the log of both sides, and use the 

log property:  log xy = y log x 

 

N log 2 = log 40 

N = 5.32 

 

(b)  What is the approximate increase in 

the decibel level?  Use the better value of 

3.02 dB per doubling. 

 

Answer:  5.32 (3.02) = 16.07 dB 

 

Example B: 

 

Obtain a more precise value of the 

change in the decibel level for the 

problem in Example B. 

 

Δβ = 10 log(I2 /I1) 

Δβ = 10 log(40I1/I1)   

      = 10 log (40) 

      = 16.02 dB 

 

 

 

 

Example C:   

 

The decibel level at a certain point is 76 dB.  

What will be the new decibel level when the 

sound intensity is increased to nine times its 

previous value? 

 

Δβ = 10 log(I2 /I1) 

Δβ = 10 log(9 I1/I1)   

      = 10 log (9) 

      = 9.54 dB 

 

 = 76 + 9.54 

   = 85.54 dB 
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Example: 

 

Twenty-four cages, each containing a barking dog, are 

arranged in a circle.  At the center of the circle is a 

listener.  If she measures a dB level of 96 dB, how 

many dogs would have to stop barking in order that 

the sound level drop to 87 dB?  Assume the dogs are 

spherically symmetric sound sources barking with the 

same power. 

 

96 - 87 = 3 + 3 + 3 

 

Applying the “3 dB down” rule, there will have to be 

three halvings of sound intensity: 

 

24 halved to 12 

12 halved to 6 

  6 halved to 3 

Only three dogs are left barking: 

24 - 3 = 21 

21 dogs would have to stop barking. 

 

 

 

 

 

 


